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Abstract

We describe a small set of additions to Scheme to support object-

oriented programming, including a form of multiple inheritance. The

extensions proposed are in keeping with the spirit of the Scheme lan-

guage and consequently di�er from Lisp-based object systems such as

Flavors and the Common Lisp Object System. Our extensions mesh

neatly with the underlying Scheme system. We motivate our design

with examples, and then describe implementation techniques that yield

e�ciency comparable to dynamic object-oriented language implemen-

tations considered to be high performance. The complete design has an
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1 Introduction and terminology

Scheme[15] is nearly an object-oriented language. This should come as no

surprise, since Scheme was originally inspired by Actors, Hewitt's message-

passing model of computation[22, 1]. Steele has described the relationship

between Scheme and Actors at length[19]. We take advantage of this rela-

tionship|and we try not to duplicate functionality that Scheme already

provides|to add full support for object-oriented programming. Our exten-

sions are in keeping with the spirit of Scheme: \It was designed to have

an exceptionally clear and simple semantics and few di�erent ways to form

expressions."[15]

We develop examples of how one might program in Scheme using object-

oriented style. Inherited behavior is handled in a straightforward manner.

We show that a new disjoint data type for instances must be added to Scheme

in order to permit application of generic operations to all Scheme objects,

and that making generic operations anonymous supports modularity. We

complete our presentation by showing how to obtain good performance for

generic operation invocation.

We use the terms object and instance idiosyncratically: an object is

any Scheme value; an instance is a value returned by a constructor in the

object system. An operation, sometimes called a \generic function," can be

thought of as a procedure whose de�nition is distributed among the various

objects that it operates on. The distributed pieces of the de�nition are called

\methods."

2 Object-oriented programming using procedures

2.1 Simple objects

Our �rst approximation to object-oriented programming in Scheme is straight-

forward: an instance is represented as a procedure that maps operations to

methods. A method is represented as a procedure that takes the arguments

to the operation and performs the operation on the instance.

As an example, consider the following de�nition of a constructor for cells:
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(define (make-simple-cell value)

(lambda (selector)

(cond ((eq? selector 'fetch)

(lambda () value))

((eq? selector 'store!)

(lambda (new-value)

(set! value new-value)))

((eq? selector 'cell?)

(lambda () #t))

(else not-handled))))

(define a-cell (make-simple-cell 13))

((a-cell 'fetch)) ! 13

((a-cell 'store!) 21) ! unspeci�ed

((a-cell 'cell?)) ! true

((a-cell 'foo)) ! error

Each call to make-simple-cell returns a new cell. Abstract operations

are represented by symbols, here fetch, store, and cell?. An instance

is represented by the procedure returned by the constructor. The lexical

variables referenced by the methods serve the purpose of instance variables.

To perform an operation on an instance, the instance is called, passing the

operation as the argument; the resulting method is then applied to the

arguments of the operation. There is no explicit notion of class, but the

code portion of the closure constructed for the expression

(lambda (selector) ...)

serves a similar purpose: it is static information shared by all instances

returned by the make-simple-cell constructor.

An instance returns the object not-handled instead of a method to

indicate it de�nes no behavior for the operation. The particular value of

not-handled is immaterial, as long as it is identi�able as being something

other than a method. We will make use of this property later.

(define not-handled (list 'not-handled))

To improve the readability of operation invocation, we introduce the

procedure operate:
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(define (operate selector the-instance . args)

(apply (the-instance selector) args))

This lets us replace ((a-cell 'store!) 34) with the somewhat more

perspicuous

(operate 'store! a-cell 34).

Operate is analogous to send in old Flavors[23] and => in CommonOb-

jects[16].

2.2 Inheritance

The following de�nes a \named" cell that inherits behavior from a simple

cell.

(define make-named-cell

(lambda (value the-name)

(let ((s-cell (make-simple-cell value)))

(lambda (selector)

(cond ((eq? selector 'name)

(lambda () the-name))

(else (s-cell selector)))))))

We say that objects returned by make-named-cell have two components:

the expression (make-simple-cell ...) yields the �rst component, and

the expression (lambda (selector) ...) yields the second. The program-

mer controls what state is shared by choosing the arguments passed to the

constructors, and by choosing the expressions used to create the components.

In this style of inheritance, only behavior is inherited. An instance can name

its components, but can assume nothing about how they are implemented.

We have single inheritance if the instance consults one component (not

including itself) for behavior. We have multiple inheritance if the instance

consults multiple components (not including itself) for behavior. For the

above example, that might be done by expanding the else clause as follows:
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(else (let ((method (s-cell selector)))

(cond ((eq? method not-handled)

(another-component selector))

(else method))))

This is similar to the style of inheritance in CommonObjects[16] in that in-

stance variables are considered private to the component, and cannot be in-

herited. However, CommonObjects forces the components to be new, where

our formulation has no such requirement; thus distinct instances may share

components and, in turn, the components' state. Because classes are not

explicit, and it is possible to share state and behavior, one may say this

approach provides delegation rather than inheritance[11, 21]. When more

than one component de�nes behavior for an operation, the behavior from the

more speci�c component (the one consulted �rst) shadows the less speci�c.

2.3 Operations on self

One frequently wants to write a method that performs further operations on

the instance. For example, if we were implementing an open output �le as

an instance that supported write-char, we could implement a write-line

operation as a loop performing write-char operations on the instance itself.

In simple cases, a method can refer to the instance by using letrec in the

instance's implementation:

(letrec ((self

(lambda (selector)

(cond ((eq? selector 'write-line)

(lambda (self string)

...

(operate 'write-char self char)))

...))))

self)

When inheritance is involved this will not work. The variable self will

not be in scope in the code for inherited methods. A component that uses

letrec as above will be able to name its \component self", but not the
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composite. A small change to the protocol for invoking methods remedies

this: the composite is passed as an argument to every method.

(define (operate selector the-instance . args)

(apply (the-instance selector) the-instance args))

2.4 Operations on components

Because components may be given names, a composite's method for a given

operation can be de�ned in terms of the behavior of one of its components.

For example, we can de�ne a kind of cell that ignores stores of values that

do not satisfy a given predicate:

(define make-filtered-cell

(lambda (value filter)

(let ((s-cell (make-simple-cell value)))

(lambda (selector)

(cond ((eq? selector 'store!)

(lambda (self new-value)

(if (filter new-value)

(operate 'store! s-cell new-value))))

(else (s-cell selector)))))))

This practice is analogous to \sending to super" in Smalltalk and call-next-method

in the Common Lisp Object System (CLOS)[5]

There is a problem here. When the composite performs an operation on

a component, the \self" argument to the component's method will be the

component, not the composite. While this is sometimes useful, we also need

some way to perform an operation on a component, passing the composite

as the \self" argument. (This is the customary operation of send to super

and its analogues.) We can do this using a variant on operate that takes

as arguments both the composite and the component from which a method

is to be obtained:

(define (operate-as component selector composite . args)

(apply (component selector) composite args))

(define (operate selector instance . args)

(apply operate-as instance selector instance args))
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3 Integration with the rest of the language

3.1 Operations on non-instances

One often wants to include non-instances in the domain of an abstract opera-

tion. For example, the operation print, when performed on a non-instance,

should invoke a printer appropriate to that object's type. Similarly, the

abstract operation cell? should apply to any object in the Scheme system,

returning false if the object is not a cell. But given our present de�nition

of operate, we cannot meaningfully say (operate op x) unless x is an in-

stance.

We can make print work on non-instances if we can associate methods

with every non-instance on which we expect to perform operations. This is

accomplished with a simple change to operate-as (remember that operate

is de�ned in terms of operate-as):

(define (operate-as component selector the-object . args)

(apply (get-method component selector)

the-object args))

(define (get-method component selector)

(if (instance? component)

(component selector)

(get-non-instance-method component selector)))

We will consider the de�nition of instance? below. As for get-non-instance-

method, we would like it to behave in a manner consistent with the dispatch

routines we have set up for instances, which are speci�c to the particular

kind of object being operated on.

(define (get-non-instance-method object selector)

((cond ((pair? object)

get-method-for-pair)

((symbol? object)

get-method-for-symbol)

... other types ...)

object selector))
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(define (get-method-for-pair pair selector)

(cond ((eq? selector print)

(lambda (self port) ...)

... other methods ...))

(define (get-method-for-symbol symbol selector)

...)

Unfortunately, any time we want a new operation to work on some kind

of non-instance, we have to modify the appropriate non-instance dispatch

routine to handle the new operation. This presents problems because these

dispatch routines are global resources for which there may be contention.

What if two di�erent modules chose to de�ne incompatible behavior for a

shared operation? But even worse, in the case of the cell? operation, we

would have to modify all dispatch code, even that for non-instances. That

would hardly be modular.

One way to de�ne a default behavior for cell? would be to have a

\vanilla object," analogous to \class object" in many object systems, that

acted as a component of every object, instance or non-instance. We could

change the dispatch for that component every time we wanted to add a new

operation to the system. This approach would also su�er the contention

problem mentioned above.

Instead of using such a \vanilla object," we take the approach of asso-

ciating default behavior with each operation. The default behavior is used

when there is no method for the operation in the object being operated on.

We change the de�nition of operate-as to implement this:

(define (operate-as component selector composite . args)

(let ((method (get-method component selector)))

(if (eq? method not-handled)

(apply (default-behavior selector) composite args)

(apply method composite args))))

The procedures default-behavior and set-default-behavior! main-

tain a table mapping selectors to procedures that implement the default

behavior.
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(set-default-behavior! 'cell? (lambda () #f))

(define a-cell (make-simple-cell 5))

(operate 'cell? a-cell) ! true

(operate 'cell? 1) ! false

Later we will see how to associate default behavior with operations without

using side e�ects.

Returning to the predicate instance?: Our new version of operate-as

indirectly uses instance? to determine whether the object is an instance.

De�ning instance? to be the same as procedure? almost works, but it fails

to account for the distinction between those procedures that obey the pro-

tocols of the object system and those that don't: (operate 'cell? list)

would generate an error instead of returning false.

To implement instance?, we need to be able to mark some procedures

as being instances. But in Scheme, the only operations on procedures are

application and identity comparison (eq?). So we must add a new primitive

type to Scheme, disjoint from the types already provided, that satis�es the

following rules:

(instance-ref (make-instance x)) ! x

(instance? (make-instance x)) ! true

(instance? y) ! false, if y was not a value

returned by make-instance

Instance constructors such as make-cellmust now mark instances using

make-instance, and get-methodmust coerce instances to procedures using

instance-ref.

(define (get-method component selector)

(if (instance? component)

((instance-ref component) selector)

(get-non-instance-method component selector)))

(define (make-simple-cell value)

(make-instance (lambda (selector)

...)))
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3.2 Non-operations applied to instances

In purely object-oriented languages, all operations are generic. In our frame-

work this would mean that a procedure call such as (car x) would be inter-

preted the same way as, say, (operate 'car x). Thus the domain of car

and other primitives would be extended to include all instances that choose

to handle the corresponding generic operation.

We consider this kind of extension to be undesirable for a number of

reasons, all of which stem from the fact that programs become harder to

reason about when all operations are generic. For example, if a call to car

can invoke an arbitrary method, then a compiler cannot assume that the

call will not have side e�ects. If arithmetic can be extended to work on

arbitrary objects, then algebraic properties such as associativity no longer

hold. Not only is e�ciency impaired, but programs can become harder for

humans to understand as well.

In the case of some system procedures, however, extension to instances

can be very useful for the sake of modularity. For example, procedures on

I/O ports can probably be extended without signi�cant impact on perfor-

mance, and they may already be generic internally to the system. If such

procedures are extended, the contract of the corresponding abstract oper-

ation must be made clear to those programmers who de�ne methods for

them.

One particular Scheme primitive can be usefully extended to instances

without sacri�cing e�ciency or static properties: procedure call. This is

because procedure call has no algebraic or other properties that are in danger

of being destroyed; invoking a procedure can potentially do anything at all.

So we can arrange for the Scheme implementation to treat a combination

( proc arg ...)

the same as

(operate 'call proc arg ...)

whenever the object proc turns out to be an instance. The call operation

should also be invoked whenever an instance is called indirectly via apply

or any other system procedure that takes a procedure argument.
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If in addition we de�ne the call operation so that when applied to a pro-

cedure, it performs an ordinary procedure call, then any lambda-expression

(lambda ( var ...) body)

is indistinguishable from the instance construction (assuming alpha-conversion

to avoid name conicts)

(make-instance

(lambda (selector)

(cond ((eq? selector 'call)

(lambda (self var ...) body))

(else not-handled)))).

This means that if we take instance construction to be primitive in our

language, then lambda need not be.

Allowing the creation of instances that handle procedure call is equiva-

lent to allowing the creation of procedures that handle generic operations.

Procedures that handle operations can be very useful in a language like

Scheme in which procedures have high currency. In T, for example, the

operation setter, when applied to a procedure that accesses a location,

returns by convention a procedure that will store into that location:

((operate 'setter car) pair new-value)

is equivalent to

(set-car! pair new-value).

Car and other built-in access procedures are set up as if de�ned by

(define car

(make-instance

(lambda (selector)

(cond ((eq? selector 'call)

(lambda (self pair)

(primitive-car pair)))

((eq? selector 'setter)

(lambda (self) set-car!))

(else not-handled)))))
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T has a generalized set! special form, analogous to Common Lisp's setf,

that provides the more familiar syntax

(set! (car pair) obj).

To de�ne a new procedure that works with set!, it is su�cient to create an

instance that handles the call and setter operations appropriately.

The T system itself makes heavy use of operations on procedures. The

system printer and the trace facility provide two examples: Often, a pro-

cedure has a print method that displays values of closed-over variables so

that the procedure is easily identi�able during debugging. The trace util-

ity creates a \traced" version of a given procedure; the original procedure is

recovered by invoking an operation on the traced procedure.

4 Anonymous operations

In our development so far, as in Smalltalk[6] and CommonObjects[16], sym-

bols are used to represent abstract operations. This practice can lead to

name clashes. If two modules use the same symbol to represent two di�er-

ent abstract operations, then one module may not work in the presence of the

other. For example, the two modules may require di�erent default behav-

iors for two di�erent abstract operations for which they have coincidentally

chosen the same name. Or, if module A de�nes objects that include as com-

ponents objects created by module B (i.e. \subclasses" one of B's classes),

then A might inadvertently use the name of an operation intended to be

internal to B. When a method in B performs this operation on instances

created by A, the method in A will be seen instead of the intended method

in B.

The problem can be eliminated if operations are represented by unique

tokens instead of symbols. New tokens must be obtained by calling a sys-

tem procedure that generates them. The creator of the token can use lexical

scoping to control what other code in the system may perform the corre-

sponding abstract operation. (In contrast to Common Lisp, Scheme uses

lexical scoping to control visibility of names between modules.) We call this

feature anonymous operations because, although the token representing an

operation is usually the value of some variable, the name of the variable is

immaterial.
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Here is the cell example reformulated using anonymous operations. New

operations are created with make-operation, which takes as an argument

the operation's default behavior.

(define fetch (make-operation error))

(define store! (make-operation error))

(define cell?

(make-operation (lambda () #f)))

(define make-simple-cell

(lambda (value)

(make-instance

(lambda (selector)

(cond ((eq? selector fetch)

(lambda (self) value))

((eq? selector store!)

(lambda (self new-value)

(set! value new-value)))

((eq? selector cell?)

(lambda (self) #t))

(else not-handled))))))

(define a-cell (make-simple-cell 8))

(operate fetch a-cell) ! 8

The variables fetch, store!, and cell? are evaluated in the course of

dispatching, and the selector argument in calls to operate is an operation,

not a symbol.

How are we to represent operations? The only property we need is that

they be distinct from each other, as determined by eq?. We could use

symbols generated by gensym, or pairs, but a better choice is to represent

operations as procedures. This way we can arrange that when an operation

is called, it performs itself on its �rst argument.

1

1

The de�nition of make-operation given here requires every evaluation of the inner

lambda-expression to result in a distinct closure. However, some Scheme compilers may

try to \optimize" the storage allocation performed by make-operation by reusing the

same procedure object every time. This is not a serious di�culty, however, since it is

always possible to circumvent such optimizations.
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(define (make-operation default-behavior)

(letrec ((this-op

(lambda (the-object . args)

(apply operate this-op the-object args))))

(set-default-behavior! this-op default-behavior)

this-op))

We can now convert from the \message passing" style interface that we

have been using to a generic procedure style interface. That is, rather than

writing

(operate fetch a-cell)

we write

(fetch a-cell).

The advantages of the generic procedure style are described in [7].

If we are allowed to de�ne call methods on instances (as described in

section 3.2), then we can eliminate the global table maintained by set-

default-behavior! and access an operation's default method via an oper-

ation applied to the operation itself.

(define (make-operation a-default-behavior)

(letrec ((this-op

(make-instance

(lambda (selector)

(cond ((eq? selector call)

(lambda (self the-object . args)

(apply operate this-op the-object args)))

((eq? selector default-behavior)

a-default-behavior)))))))

this-op))

(define default-behavior (make-operation error))
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5 E�cient implementation

We discuss two e�ciency problems: dispatch time and method invocation

time. We revise our formulation to cope with the �rst, explain how a Scheme

compiler can help with the second, and then consider the �rst again, but

with respect to composite objects.

5.1 Reducing dispatch time

Dispatch time is the time spent mapping from operation to method. If there

are many operations in a component, or many components in a composite,

then performing operations will be much slower than procedure call.

Dispatch time in the examples presented is proportional to the number

of operations handled. Even if each component performs its dispatch in

constant time (say using a hash table) dispatch time would still be propor-

tional to the total number of components from which the composite object

inherits. Two problems with performing hashes in components arise.

� If the number of operations per component tends to be small, hash

lookup may be slower than linear search. Hashing may be practical in

composite objects if we can combine the dispatches of all the compo-

nents. A way to do this is described below.

� A naive approach would result in a distinct hash table per instance.

This is far too costly in space. Having like instances use the same hash

table is problematic for two reasons.

{ A shared table cannot map from operations to methods because

the methods vary from instance to instance. This is because we

have chosen to represent methods as closures that include the

environment speci�c to the instance.

{ In the example above the anonymous operations were bound to

global variables; this need not be so. If the operations are lo-

cally bound, the keys for the table may change from instance to

instance.

To �x these problems, we separate operation dispatch from method in-

vocation: make-instance now takes two arguments, a dispatcher and a

method invoker. We then have:
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(instance? (make-instance d i)) ! true

(instance-dispatcher (make-instance d i)) ! d

(instance-invoker (make-instance d i)) ! i

(instance? y) ! false, if y was not a value

returned by make-instance

A dispatcher maps an operation to a method index. The invoker takes a

method index and all the arguments for an operation and performs the

corresponding method. The following example illustrates this:

(define make-simple-cell

(let ((dispatcher

(lambda (op)

(cond ((eq? op fetch) 0)

((eq? op store!) 1)

...

(else not-handled)))))

(lambda (value)

(make-instance

dispatcher

(lambda (index self . args)

(apply (case index

((0) (lambda (self) value))

((1) (lambda (self new-value)

(set! value new-value)))

...)

self args))))))

Notice that instances returned by make-simple-cell use the same dis-

patcher. We can arrange for the keys to the dispatch table, here implemented

by cond, not to change by having the dispatcher make copies of the relevant

global variables.

We are free to implement the mapping performed by the dispatcher, and

the mapping performed by the invoker, as we see �t. The choices of cond

and case, respectively, are expository.

The code for performing operations must be changed so that it calls both

the dispatcher and the invoker:
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(define (operate-as component selector composite . args)

(let ((token (get-token component selector)))

(if (eq? token not-handled)

(apply (default-behavior selector) composite args)

(apply invoke-method composite token args))))

(define (get-token component selector)

(if (instance? component)

((instance-dispatcher component)

selector)

(get-non-instance-token component selector)))

(define (invoke-method component token composite . args)

(apply (if (instance? component)

(instance-invoker component)

(non-instance-invoker component))

token composite args))

5.2 Fast method invocation

To reduce the amount of time spent in the storage allocator and garbage

collector, we would like to avoid allocating a new closure every time the in-

voker applies a method. Because the method is only called from the invoker,

the compiler can customize the calling sequence from the invoker to each

method. The environment for each method is a subset of the environment

for the invoker, so each method can use the invoker's environment. Thus the

code for the invoker reduces to no more than a jump through a branch table

to the appropriate method.

2

The arguments are simply \passed through."

If we assume the general calling sequence puts a pointer to the callee's envi-

ronment in a register, then the code for the methods can access their local

state as indirect loads o� that register.

2

In practice, having the compiler recognize that the invoker has exactly the right form

might be more trouble than having the object system introduce a new primitive the

compiler can recognize. We leave this to the implementors.
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; assume �rst argument is in A1

load table(pc)[a1],a1

jump (a1)

table: address of code for method 1

address of code for method 2

...

method1: ...

method2: ...

...

Happily, this style of transformation has been part of the Scheme cul-

ture since near its inception[18, 19, 20]. More recently, the T compiler[8,

9] performs a similar set of transformations in compiling its variant of

make-instance. For a Scheme compiler already performing environment

and closure analysis, only small changes are needed to implement invokers

e�ciently.

5.3 E�ciency of composite objects; dispatch time revisited

The separation of an instance into an invoker and dispatcher makes it pos-

sible for a composite object to construct a single dispatcher that combines

the component dispatchers. Invokers corresponding to the component dis-

patcher must also be combined into a single invoker. A constructor for a

composite instance with two components in addition to its own behavior

might look roughly as follows:

(define constructor

(let ((dispatcher

(combine-dispatchers dispatcher1

dispatcher2

simple-dispatcher)))

(lambda (a b c)

(make-instance

dispatcher

(combine-invokers invoker1

invoker2

simple-invoker)))))
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The method index returned by the dispatcher in the last example is an

integer. We call such a dispatcher a simple dispatcher. Its corresponding

invoker is a simple invoker.

A dispatcher created by combine-dispatchers returns a method in-

dex that is a pair invoker number, integer index. An invoker returned by

combine-invokers performs a two stage dispatch based on such a method

index. The invoker number selects a simple invoker, and the integer index

is passed to that invoker to perform the method. The system can be imple-

mented such that there are only these two kinds of invokers and dispatchers

by having combine-dispatchers (combine-invokers) always create struc-

tures containing only simple dispatchers (invokers).

The implementation of combine-dispatchers and combine-invokers

requires that dispatchers and invokers be able to divulge some information

about themselves. This is easy if dispatchers and invokers are themselves

instances!

5.4 Caching

Many object system implementations perform some variety of caching to

minimize the amount of time in operation dispatch. The introduction of

dispatchers makes a variety of caching strategies easy in our framework

too. For the sake of caching, the dispatcher plays the same role as the

class plays in other object systems[3]. For caching to work correctly, the

dispatchers must be pure functions. Unfortunately, the dispatcher given for

make-simple-cell depended on the values of global variables which could

change at runtime. Re-coding the dispatcher to make private copies of the

relevant global variables �xes the problem.

6 An example

The example program given here illustrates multiple inheritance, sending to

self, and sending to a component.

To improve readability and hide the details of the object system imple-

mentation, some syntactic sugar is introduced for expressions that create

instances and dispatchers. An expression of the form
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(dispatcher (disp

1

disp

2

: : :)

op

1

op

2

: : :)

yields a dispatcher for instances that handle the operations op

i

directly and

have components with dispatchers disp

1

disp

2

: : : . An expression of the form

(instance disp

(component

1

component

2

: : :)

((op

1

formal

11

formal

12

: : :) body

1

)

((op

2

formal

21

formal

22

: : :) body

2

)

: : :)

yields an instance with components component

1

, component

2

, : : : , and meth-

ods

(lambda (formal

1i

: : :) body

i

)

for the corresponding operations. The operations, and their order, in the

instance and its components must match those of the given dispatcher.

The example de�nes a kind of cell that maintains a history of all the

values that have been stored into it. These cells are implemented as objects

that have two components: a \�ltered cell" (section 2.4), and a sequence.

The cell's history may be accessed using sequence operations.
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; ------------------ Sequences

(define seq-ref (make-operation #f))

(define seq-set! (make-operation #f))

(define seq-length (make-operation #f))

(define sequence-dispatcher

(dispatcher () seq-ref seq-set! seq-length print))

(define (make-simple-sequence size)

(let ((v (make-vector size)))

(instance sequence-dispatcher

()

((seq-ref self n)

(vector-ref v n))

((seq-set! self n val)

(vector-set! v n val))

((seq-length self)

(vector-length v))

((print self port)

(format port "#<Sequence ~s>" (seq-length self))))))

A sequence is an object that behaves just like a vector, but is manipulated

using generic operations.

; ------------------ Filtered cells

(define fetch (make-operation #f))

(define store! (make-operation #f))

(define cell-dispatcher

(dispatcher () fetch store! print))

(define (make-filtered-cell value filter)

(instance cell-dispatcher

()

((fetch self) value)

((store! self new-value)

(if (filter new-value)

(set! value new-value)

(discard self new-value)))

((print self port)

(format port "#<Cell ~s>" value))))
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; ------------------ Cells with history

(define position (make-operation #f))

(define discarded-value (make-operation #f))

(define discard

(make-operation

(lambda (cell value)

(format t "Discarding ~s~%" value))))

(define cell-with-history-dispatcher

(dispatcher (cell-dispatcher

sequence-dispatcher)

position

store!

discard

discarded-value

print))
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; ------------------ Cells with history, continued

(define (make-cell-with-history initial-value filter size)

(let ((cell (make-filtered-cell initial-value

filter))

(seq (make-simple-sequence size))

(most-recent-discard #f)

(pos 0))

(let ((self

(instance cell-with-history-dispatcher

(cell seq)

((position self) pos)

((store! self new-value)

(operate-as cell store! self new-value)

(seq-set! self pos new-value)

(set! pos (+ pos 1)))

((discard self value)

(set! most-recent-discard value))

((discarded-value self)

most-recent-discard)

((print self port)

(format port

"#<Cell-with-history ~s>"

(fetch self))))))

(store! self initial-value)

self)))

The two methods for the store! operation, together with the somewhat

frivolous discard operation, illustrate sending to self and sending to a com-

ponent. The store! method for cells with history overrides the store!

method from the cell component. It invokes the store! operation on the

component using operate-as. The component's method in turn calls a

discard operation on the composite if the stored value fails to pass the

�lter. If the �rst store! method had simply invoked the store! operation

on the component, the discard would have been applied to the component,

not the composite, and the wrong method would have been invoked.
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T object

system

Amos

no cache

Amos

with cache

Tektronix

Smalltalk

MacScheme

SCOOPS

Symbolics

Flavors

1 by 1 37,000 20,300 20,000 76,000 1,700 54,000

10 by 10 2,300 3,300 20,000 76,000 1,000 54,000

20 by 5 1,700 3,300 20,000 76,000 1,000 54,000

proc. call 150,000 | | | 19,000 245,000

Table 1: Comparative performance of object systems (operations per second)

7 Role of the programming environment

We have not treated many problems that are usually addressed in object

oriented programming languages. For example, when a constructor is re-

de�ned, instances that were created before the rede�nition are \orphaned"

| they may not be consistent with the new de�nition. We consider this

a problem that should be solved by the programming environment. To do

this, the programming environment may need to impose constraints on the

implementation of the object system. There is a similar problem associated

with rede�ning operations.

In our view, there is nothing special about instances in this regard; the

same problem comes up with procedures. What should the programming

environment do about orphaned closures when the de�nition of the proce-

dure that created them is modi�ed? This is an orthogonal problem area

that should be solved independently of object-oriented programming.

In our system, methods for a component must be de�ned monolithically.

Again, the task of managing distributed de�nitions can be the responsibility

of the programming environment.

8 Experimental results

The design described here is essentially the same as the T object system,

about which little has been published. (T itself is described in [14] and [13].)

T's object system, including anonymous operations and single inheritance,

has been in production use since 1983, and its object system has proved to

be quite valuable. Instances are implemented just as compactly as closures:

an instance with n \instance variables" generally consumes only n+1 words
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of storage. Recently a form of multiple inheritance (join) has been added to

T, but T does not yet have any equivalent of dispatchers. Method lookup is

by linear search, and in the case of multiple inheritance, operation dispatch

performs one procedure call for each component.

We have measured one aspect of the performance of various dynamic

language object systems: number of operations (sends) per second that can

be performed on an instance. The data appear in Table 1. Our goals were

(1) to compare an implementation based on our design to other dynamic

language object systems; and (2) to assess the e�ect of adding dispatchers to

T's object system. Of the implementations measured, Tektronix Smalltalk[2]

and Symbolics Flavors are considered to be high performance.

We performed three benchmarks. \1 by 1" measures the time to per-

form an operation on an instance of one component with one operation.

\10 by 10" measures the time to perform an operation on an instance of

10 components, each component handling 10 operations; similarly \20 by

5" measures instances of 20 components, each component handling 5 oper-

ations. We measured number of procedure calls per second in the various

implementations as a reference to which to compare the other measurements.

We measured several implementations, including a prototype of our de-

sign, with dispatchers, in an almost portable subset of T. We refer to this

prototype as Amos, for \a minimal object system." Amos uses linear search

for method lookup, but it does combine components. We also measured

a version of Amos which maintained a small method lookup cache in each

operation.

For the T object system, the compiler performs the analysis described

above, and the code for operations (essentially operate and its sub-functions)

is hand-coded assembly language.

SCOOPS is an object system for Scheme based on Flavors. MacScheme

SCOOPS is an implementation of SCOOPS quite speci�c to MacScheme.

Tektronix Smalltalk, and Amos with cache, use method lookup caches.

Symbolics Flavors uses a hash table for method lookup.

The T object system, Amos, and Tektronix Smalltalk were measured on

comparable 16.7 Mhz Motorola 68020 Unix systems. MacScheme SCOOPS

was measured on an Apple Macintosh II (a 15.7 Mhz 68020), Symbolics

Flavors was measured on a Symbolics 3650. In overall performance, for the
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sort of code tested, the 3650 is considered as much as twice as fast as the

16.7 Mhz 68020 systems tested.

The results show that dispatchers are e�ective, and that our design can

be implemented with e�ciency comparable to other dynamic language ob-

ject systems. Because Amos and the T object system use linear search for

method lookup, performance falls o� with increasing numbers of operations

that the instance handles. T object system performance also decreases with

increasing number of components because it does not combine the compo-

nents in any way. Amos does not have this problem.

For instances with small numbers of methods and components, the T

object system is comparable to the other systems measured. The addition

of dispatchers would make it competitive for instances with larger numbers

of operations and components.

Because the benchmarks are so simple, any sort of caching is extremely

e�ective. In practice, we expect the linear search in dispatch will slow the

system substantially for instance handling many operations. Replacing the

linear search with hashing is practical for Amos but not for T, because Amos

combines dispatchers.

9 Comparison with other work

Existing Lisp-based object-oriented languages include Flavors[12], the Com-

mon Lisp Object System (CLOS)[5], and CommonObjects.[16] All of these

systems are substantially more complicated than our proposal, particularly

in their treatment of method combination and multiple inheritance. They

extend the underlying language with a new kind of variable, instance vari-

ables. Instance variables are not lexically scoped, since their scope (i.e. the

program text for methods of the corresponding class) is not textually related

to their point of de�nition (the class de�nition). Flavors and CLOS sup-

port follow our approach of implementing anonymous generic operations as

procedures. CommonObjects shares some of our goals, particularly strong

support for encapsulation.

Smalltalk[6] makes no distinction between language and environment. It

includes many features that defeat encapsulation, as such features tend to

make the job of the programming environment easier, a Smalltalk priority.
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Our applicative bias is apparent in our design in that there are no ini-

tialization methods, and there are no side-e�ects to invokers (our analogue

of classes). Initialization is done applicatively in the contructor procedures

rather than by methods that side-a�ect an instance's state. Side-a�ecting a

class is a common way to achieve method de�nition in other systems.

Our call operation corresponds to the value message in Smalltalk, and

procedures play the role of Smalltalk blocks by handling the call operation.

However, Smalltalk's construct for creating blocks is unrelated to the con-

struct for creating other kinds of objects. This appears to be an unnecessary

source of language complexity.

Oaklisp[10] also aims for minimality. As in our system, Oaklisp can

de�ne lambda in terms of object system primitives. In Oaklisp, however,

procedures are degenerate generic operations, whereas in our system proce-

dures are degenerate instances. While we retain Scheme's lexical scoping,

Oaklisp has two kinds of bindings and scope rules: formal parameters are

lexical and are bound in the usual way, while instance variables are de�ned

by the class de�nition, which cannot, in general, be statically related to

the points of use of the instance variables. Also, while we retain Scheme's

almost-applicative style, Oaklisp relies on side-e�ects for de�ning methods

and initializing instance variables.

As formulated here, anonymous operations are essentially capabilities[4].

An operation is an unforgeable token that gives a particular kind of access

to some otherwise opaque objects.

10 Conclusions

We have shown how to add object-oriented programming facilities to Scheme

with only small additions to the language. In fact, the object system can be

explained in portable Scheme with the addition of a single new, but simple,

primitive type. The system supports applicative programming style, which

to our knowledge is unique among Lisp-based object-oriented programming

systems. For e�ciency, we depend on known and implemented compilation

techniques for Scheme.

The programmer's interface to the object system needs work. With

the syntax described in Section 6, the programmer must make sure the

dispatcher agrees with the invoker. This annoying problem arises from the
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great exibility our system has in creating objects. We can cope with this

redundancy in any of several ways: (1) Eliminate it by introducing some kind

of constructor syntax. This might require the addition of automatically

generated initialization methods, and thus side e�ects, which we prefer to

avoid. (2) Check it dynamically at instance creation time|the necessary

information is available, but this is expensive, with one comparison per

operation handled by the instance. (3) Check it statically, using something

like a Milner-style type inference system.

We believe that it is possible to build a programming environment as

good as Smalltalk's without sacri�cing support for encapsulation.
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